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InfoTopo: Topological Information Data Analysis. Deep statistical unsupervised and supervised learning.

InfoTopo is a Machine Learning method based on Information Cohomology, a cohomology of statistical systems
[0,1,8,9]. It allows to estimate higher order statistical structures, dependences and (refined) independences or gener-
alised (possibly non-linear) correlations and to uncover their structure as simplicial complex. It provides estimations
of the basic information functions, entropy, joint and condtional, multivariate Mutual-Informations (MI) and condi-
tional MI, Total Correlations. . . The package was written to be fully compliant with scikit learn tools, objects and
nomenclature. InfoTopo is at the cross-road of Topological Data Analysis, Deep Neural Network learning, statistical
physics and complex systems:

1. With respect to Topological Data Analysis (TDA), it provides intrinsically probabilistic methods that
does not assume metric (Random Variable’s alphabets are not necessarilly ordinal) [2,3,6]. It also
provide a quantification of higher order statistical interactions that cannot be detected by pairwise
relations or methods based on Vietoris-Rips complexes.

2. With respect to Deep Neural Networks (DNN), it provides a simplical complex constrained DNN
structure with topologically derived unsupervised and supervised learning rules (forward propaga-
tion, differential statistical operators). The neurons are random Variables, the depth of the layers
corresponds to the dimensions of the complex [3,4,5].

3. With respect to statistical physics, it provides generalized correlation functions, free and internal en-
ergy functions, estimations of the n-body interactions contributions to energy functional, that holds
in non-homogeous and finite-discrete case, without mean-field assumptions. Cohomological Com-
plex implements the minimum free-energy principle. Information Topology is rooted in cognitive
sciences and computational neurosciences, and generalizes-unifies some consciousness theories [5].

4. With respect to complex systems studies, it generalizes complex networks and Probabilistic graphi-
cal models to higher degree-dimension interactions [2,3].

(5.) To add just some other buzz words, please be sure that the methods presented here could fully pertain
to “explainable AI”, although just like mathematic it has nothing artificial, as long as mathematic will be
the language of nature and it does not guarantees any inteligence nor its converse, this is indeed up to the
use you will make of it.

It assumes basically:

1. a classical probability space (here a discrete finite sample space), geometrically formalized as a probability
simplex with basic conditionning and Bayes rule and implementing

2. a complex (here simplicial) of random variable with a joint operators

3. a quite generic coboundary operator (Hochschild, Homological algebra with a (left) action of conditional
expectation)

The details for the underlying mathematics and methods can be found in the papers:

[0] Manin, Y., Marcolli, M., Homotopy Theoretic and Categorical Models of Neural Information Networks, 2020,
arXiv:2006.15136, PDF-0

[1] Vigneaux J., Topology of Statistical Systems. A Cohomological Approach to Information Theory. Ph.D. Thesis,
Paris 7 Diderot University, Paris, France, June 2019. PDF-1

[2] Baudot P., Tapia M., Bennequin, D. , Goaillard J.M., Topological Information Data Analysis. 2019, Entropy, 21(9),
869 PDF-2

[3] Baudot P., The Poincaré-Shannon Machine: Statistical Physics and Machine Learning aspects of Information
Cohomology. 2019, Entropy , 21(9), PDF-3

[4] Baudot P. , Bernardi M., The Poincaré-Boltzmann Machine: passing the information between disciplines, ENAC
Toulouse France. 2019 PDF-4
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https://scikit-learn.org/stable/
https://arxiv.org/abs/2006.15136
https://webusers.imj-prg.fr/~juan-pablo.vigneaux/these.pdf
https://www.mdpi.com/1099-4300/21/9/869
https://www.mdpi.com/1099-4300/21/9/881
https://drive.google.com/open?id=1bo_tju7BLYTdAcZasDPtx-xQ2HOc3E8A
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[5] Baudot P. , Bernardi M., Information Cohomology methods for learning the statistical structures of data. DS3 Data
Science, Ecole Polytechnique 2019 PDF-5

[6] Tapia M., Baudot P., Dufour M., Formizano-Treziny C., Temporal S., Lasserre M., Kobayashi K., Goaillard J.M..
Neurotransmitter identity and electrophysiological phenotype are genetically coupled in midbrain dopaminergic neu-
rons. Scientific Reports. 2018. PDF-6

[7] Baudot P., Elements of qualitative cognition: an Information Topology Perspective. Physics of Life Reviews. 2019.
extended version on Arxiv. PDF-7

[8] Baudot P., Bennequin D., The homological nature of entropy. Entropy, 2015, 17, 1-66; doi:10.3390. PDF-8

[9] Baudot P., Bennequin D., Topological forms of information. AIP conf. Proc., 2015. 1641, 213. PDF-9

You can find the software on github.

The previous version of the software INFOTOPO : the 2013-2017 scripts are available at Github infotopo

Installation

PyPI install, presuming you have numpy and networkx installed:

pip install infotopo
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https://www.google.com/url?q=https%3A%2F%2Fwww.ds3-datascience-polytechnique.fr%2Fwp-content%2Fuploads%2F2019%2F06%2FDS3-426_2019_v2.pdf&sa=D&sntz=1&usg=AFQjCNHWjQjdREgj7K10jKpLKnTVWTL5iA
https://www.nature.com/articles/s41598-018-31765-z
https://arxiv.org/abs/1807.04520
https://www.mdpi.com/1099-4300/17/5/3253
https://aip.scitation.org/doi/abs/10.1063/1.4905981
https://github.com/pierrebaudot/infotopopy
https://github.com/pierrebaudot/INFOTOPO/


CHAPTER 1

How to Use InfoTopo

Infotopo is a general Machine Learning set of tools gathering Topology (Cohomology and Homotopy), statistics
and information theory (information quantifies statistical structures generically) and statistical physics. It provides a
matheamticaly formalised expression of deep network and learning, and propose anuspervised or supervised learning
mode (as a special case of the first). It allows a simple and autonatic exploration of the data structures, dimension
reduction and supervised or unsupervised classification.

The raw methods are computationnally consuming due to the intrinsic combinatorial nature of the topological tools,
even in the simplest case of a simplicial case (the general case is based on the much broader partition combinatorics)
the computational complexity is of the order of 2𝑛 . As a consequence, an important part of the tools and methods
are dedicated to overcome this extensive computation. Among the possible strategies and heuristics used or currently
developped, are:

_ restrict to simplicial cohomology and combinatorics (done here).

_ possible exploration of only the low dimensional structures (done here).

_ possible exploration of only most or least informative paths (done here).

_ possible restriction 2nd degree-dimension statistical interactions: what is computed here is the equivalent of the
Cech complex (with all degree- dimension computed), and such restriction is equivalent to computing the Vietoris-
Rips complex (in development).

_ compute on GPU and Tensorflow version (in development).

As a result, for this 0.1 version of the software, and for computation with commercial average PC, we recommand to
analyse up to 20 variables (or dimensions) at a time in the raw brut-force approach (see performance section).

We now present some basic example of use, inspiring our presentation from the remarkable presentation of UMAP by
McInnes. We first import some few tools: some of the datasets available in sklearn, seaborn to visualise the results,
and pandas to handle the data.

from sklearn.datasets import load_iris, load_digits, load_boston, load_diabetes
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import timeit

3

https://umap-learn.readthedocs.io/en/latest/
https://umap-learn.readthedocs.io/en/latest/
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sns.set(style='white', context='notebook', rc={'figure.figsize':(14,10)})

1.1 Iris data

1.1.1 Iris dataset

The first example of dataset application we will present is the iris dataset. It is a very small dataset composed of
4 Random-Variables or dimensions that quantify various petals and sepals observables of 3 different species of Iris
flowers, like petal length, for 150 flowers or points (50 for each species). In the context of Infotopo it means that
dimension_tot = 4 and sample_size = 150 (we consider all the points), and as the dimension of the data set is small
we will make the complete analysis of the simplicial structure of dependencies by setting the maximum dimension
of analysis to dimension_max = dimension_tot. We also set the other parameters of infotopo to approriate, as further
explained. We can load the iris dataset from sklearn.

iris = load_iris()
iris_df = pd.DataFrame(iris.data, columns = iris.feature_names)
print(iris.DESCR)

dimension_max = iris.data.shape[1]
dimension_tot = iris.data.shape[1]
sample_size = iris.data.shape[0]
nb_of_values =9
forward_computation_mode = False
work_on_transpose = False
supervised_mode = False
sampling_mode = 1
deformed_probability_mode = False

Iris Plants Database
====================

Notes
-----
Data Set Characteristics:

:Number of Instances: 150 (50 in each of three classes)
:Number of Attributes: 4 numeric, predictive attributes and the class
:Attribute Information:

- sepal length in cm
- sepal width in cm
- petal length in cm
- petal width in cm
- class:

- Iris-Setosa
- Iris-Versicolour
- Iris-Virginica

:Summary Statistics:

============== ==== ==== ======= ===== ====================
Min Max Mean SD Class Correlation

============== ==== ==== ======= ===== ====================
sepal length: 4.3 7.9 5.84 0.83 0.7826
sepal width: 2.0 4.4 3.05 0.43 -0.4194
petal length: 1.0 6.9 3.76 1.76 0.9490 (high!)

(continues on next page)

4 Chapter 1. How to Use InfoTopo

https://en.wikipedia.org/wiki/Iris_flower_data_set


INFOTOPO Documentation, Release stable

(continued from previous page)

petal width: 0.1 2.5 1.20 0.76 0.9565 (high!)
============== ==== ==== ======= ===== ====================

:Missing Attribute Values: None
:Class Distribution: 33.3% for each of 3 classes.
:Creator: R.A. Fisher
:Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov)
:Date: July, 1988

This is a copy of UCI ML iris datasets.
http://archive.ics.uci.edu/ml/datasets/Iris

The famous Iris database, first used by Sir R.A Fisher

This is perhaps the best known database to be found in the
pattern recognition literature. Fisher's paper is a classic in the field and
is referenced frequently to this day. (See Duda & Hart, for example.) The
data set contains 3 classes of 50 instances each, where each class refers to a
type of iris plant. One class is linearly separable from the other 2; the
latter are NOT linearly separable from each other.

References
----------

- Fisher,R.A. "The use of multiple measurements in taxonomic problems"
Annual Eugenics, 7, Part II, 179-188 (1936); also in "Contributions to
Mathematical Statistics" (John Wiley, NY, 1950).

- Duda,R.O., & Hart,P.E. (1973) Pattern Classification and Scene Analysis.
(Q327.D83) John Wiley & Sons. ISBN 0-471-22361-1. See page 218.

- Dasarathy, B.V. (1980) "Nosing Around the Neighborhood: A New System
Structure and Classification Rule for Recognition in Partially Exposed
Environments". IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. PAMI-2, No. 1, 67-71.

- Gates, G.W. (1972) "The Reduced Nearest Neighbor Rule". IEEE Transactions
on Information Theory, May 1972, 431-433.

- See also: 1988 MLC Proceedings, 54-64. Cheeseman et al"s AUTOCLASS II
conceptual clustering system finds 3 classes in the data.

- Many, many more ...

As visualizing data in 4 dimensions or more is hard or not possible, we can first plot all the pairwise scatterplot matrix
to present the pairwise correlations and dependencies between the variables, using Seaborn and pandas dataframe.

iris_df = pd.DataFrame(iris.data, columns=iris.feature_names)
iris_df['species'] = pd.Series(iris.target).map(dict(zip(range(3),iris.target_names)))
sns.pairplot(iris_df, hue='species')
plt.show()

1.1. Iris data 5
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All those 2D views gives a rought but misleading idea of what the data looks like in high dimensions since, as we
will see, some fully emergent statistical dependences (called synergy in the original work of Bialek’s team) can appear
in higher dimension which are totally unobservable in those 2D views. However such 2D views gives a fair visual
estimation of how much each pairs of variale covary, the correlation coefficient and its generalization to non-linear
relations, the pairwise Mutual Information (I2). In Topological Data Analysis (TDA) terms, it gives rought idea of
what the skeleton of a Vietoris-Rips (information or correlation) complex of the data could be. We will see how to go
beyond this pairwise statistical interaction case, and how we can unravel some purely emergent higher dimensional
interations. Along this way, we will see how to compute and estimate all classical information functions, multivariate
Entropies, Mutual Informations and Conditional Entropies and Mutual Informations.

1.1.2 Entropy

To use infotopo we need to first construct a infotopo object from the infotopo package. This makes a lot of same word,
information is a functor, a kind of general application or map, that could be either a function or a class. So let’s first
import the infotopo library, we a set of specifications of the parametters (cf. section parameters, some of them like
dimension_max = dimension_tot and sample_size have been fixed previously to the size of the data input matrix).

import infotopo

6 Chapter 1. How to Use InfoTopo
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information_topo = infotopo.infotopo(dimension_max = dimension_max,
dimension_tot = dimension_tot,
sample_size = sample_size,
work_on_transpose = work_on_transpose,
nb_of_values = nb_of_values,
sampling_mode = sampling_mode,
deformed_probability_mode = deformed_probability_mode,
supervised_mode = supervised_mode,
forward_computation_mode = forward_computation_mode)

Now we will compute all the simplicial semi-lattice of marginal and joint-entropy, that contains 2𝑛 elements including
the unit 0 reference measure element. The marginal 𝐻1 entopies are defined as classicaly by Shannon :

𝐻1 = 𝐻(𝑋𝑗 ;𝑃 ) = 𝑘
∑︁

𝑥∈[𝑁𝑗 ]

𝑝(𝑥) ln 𝑝(𝑥)

and the multivariate joint-entropies 𝐻𝑘 just generalise the preceding to k variables:

𝐻𝑘 = 𝐻(𝑋1, ..., 𝑋𝑘;𝑃 ) = 𝑘

𝑁1×...×𝑁𝑘∑︁
𝑥1,...,𝑥𝑘∈[𝑁1×...×𝑁𝑘]

𝑝(𝑥1.....𝑥𝑘) ln 𝑝(𝑥1.....𝑥𝑘)

The figure below give the usual Venn diagrams representation of set theoretic unions and the corresponding semi-
lattice of joint Random Variables and Joint Entropies, together with its correponding simplicial representation, for 3
(top) and 4 variables-dimension (bottom, the case of the iris dataset with 2 power 4 joint random variables). This
correspondence of joint-information with the semi-lattice of union was formalized by Hu Kuo Ting . The edges of the
lattice are in one to one correspondence with conditional entropies.

1.1. Iris data 7
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https://drive.google.com/file/d/10ZMjN8Q4w6t4osaYODdBg-pF9zlu21R_/view?usp=sharing


INFOTOPO Documentation, Release stable

To do this we will call simplicial_entropies_decomposition, that gives in output all the joint entropies in the form of a
dictionary with keys given by the tuple of the joint variables (ex: (1,3,4)) and with values the joint or marginal entropy
in bit (presented below).

Nentropie = information_topo.simplicial_entropies_decomposition(iris.data)

{(4,): 2.9528016441309237, (3,): 2.4902608474907497, (2,): 2.5591245822618114, (1,):
→˓2.8298425472847066, (3, 4): 3.983309507504916, (2, 4): 4.798319817958397, (1, 4): 4.
→˓83234271597051, (2, 3): 4.437604597473526, (1, 3): 4.2246575340121835, (1, 2): 4.
→˓921846615158947, (2, 3, 4): 5.561696151051504, (1, 3, 4): 5.426426190681815, (1, 2,
→˓4): 6.063697650692486, (1, 2, 3): 5.672729631265195, (1, 2, 3, 4): 6.
→˓372515544003377}

Such dictionary is hard to read; to allow a relevant visualization of the the simplicial entropy structure, the function
simplicial_entropies_decomposition also plots the Entropy landscapes. Entropy landscapes provides a representation
of the lattice of joint (𝐻𝑘) and conditional entropies (noted as the action of Y 𝑌.𝐻𝑘, for 𝐻(𝑋1, ..., 𝑋𝑘|𝑌 )) that ranks
the joint variables as a function of their entropy value and of the rank-dimensions as illustrated in the figure below:

8 Chapter 1. How to Use InfoTopo
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An Entropy of Information Path is a sequence of inclusive tuples of increasing dimensions and follows the edges of
the semi-lattice, and the slope of such a path is exactly minus the conditional-entropy, as a basic representation of the
fundamental chain rule of Entropy.

While the total dimension n (dimension_tot) of the analysis increases, the number of subsets of k variables (or k-tuples)
increases combinatorially, following the binomial coefficient C(n,k). It hence becomes rapidly fully impractical to
vizualize, plot and to differentiate the C(n,k) values of entropy obtained in dimension k. The Entropy landscapes hence
plot the histograms of entropy values as a function of the dimension-rank k, and the number of bins of the histograms
is imposed by the parameter nb_bins_histo. The count of the number of subsets having entropy values in the bin
range of the histograms is represented by a color code in the entropy landscapes. Hence, Entropy Landscapes shall
be understood as (unormalised..but it could be normalised) entropy measure densities histograms (there is interesting
further theoretical and applied development upon this point, since entropy functions obey axioms of measure: one
could legitamely investigate entropies of entropies, a kind of complexity of information landscapes, see Hsu et al. ).

To plot the Entropy Landscapes and the distribution of entropy values for each dimension-rank k, we use the “en-
tropy_simplicial_lanscape” command as following:

information_topo.entropy_simplicial_lanscape(Nentropie)

On the example of Iris dataset, the Entropy Landscape we obtain look like this:

1.1. Iris data 9
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In this low dimensional case (dimension_tot = 4), the landscapes are very low informative (poor information structure)
and the histrograms have low meaning, since there is only one subset-k-tuple per bin value, and hence only one color
(here the green value of 1). The Entropy Landscape themselfs are quite poor in information, joint-entropy is mono-
tonically increasing along entropy path, a direct consequence of conditional-entropy positivity (concavity argument)
which is moreover the basic fact at the origin of the basic topological expression of the 2nd law of thermodynamic [3].
As a consequence, we usually do not uncover a lot of usefull information on the datas structure from those Entropy
Landscape, at the exception of curse of dimensionality quantification and in some cases, (assymptotic) entropy rates
(to do). Basically, joint-entropy quantifies “randomness” (in a non formal definition of the word), uncertainty, or how
much the data points spreads in the dimensions of the variables. Hence low entropies shall be intrepreted as “localised”
densities of data points or sparsness of the probability density histograms (also not in the usual kurtosis sens).

In any entropy or information function estimation, it is necessary to check that the number of sample is
sufficient to provide a faithfull estimate, to avoid the sampling problem also called “curse of dimension”.
The command “entropy_simplicial_lanscape” also computes the maximal dimension above which the estima-
tion becomes too inacurate and shall not be interpreted. This is explained in more details in the section
“curse_of_dimension_and_statistical_dependencies_test”.

1.1.3 Mutual Information

Now, let’s have a look at the statistical dependencies structures in the dataset by computing the Mutual-Information
lanscapes which principle is depicted in the preceding figure and that basically plots k-dimensional multivariate Mu-
tual Informations (𝐼𝑘) in the same way as Entropy Landscapes. Pairwise Mutual Information 𝐼2 is defined as usual
following Shannon :

𝐼2 = 𝐼(𝑋1;𝑋2;𝑃 ) = 𝑘

𝑁1×𝑁2∑︁
𝑥1,𝑥2∈[𝑁1×𝑁2]

𝑝(𝑥1.𝑥2) ln
𝑝(𝑥1)𝑝(𝑥2)

𝑝(𝑥1.𝑥2)

They generalize to the multivariate mutual informations, 𝐼𝑘, as alternated functions of entropies, following McGill and
Hu Kuo Ting.

𝐼𝑘(𝑋1, ..., 𝑋𝑘;𝑃 ) =

𝑘∑︁
𝑖=1

(−1)𝑖−1
∑︁

𝐼⊂[𝑘];𝑐𝑎𝑟𝑑(𝐼)=𝑖

𝐻𝑖(𝑋𝐼 ;𝑃 )

10 Chapter 1. How to Use InfoTopo

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjtrqOXrsPrAhVCrxoKHcBDBrQQgAMoAHoECBIQAg&url=http%3A%2F%2Fscholar.google.fr%2Fscholar_url%3Furl%3Dhttps%3A%2F%2Fpure.mpg.de%2Frest%2Fitems%2Fitem_2383162_7%2Fcomponent%2Ffile_2456978%2Fcontent%26hl%3Dfr%26sa%3DX%26scisig%3DAAGBfm2dgGR4Ly92eRCfhrM1BgCnbIBvBA%26nossl%3D1%26oi%3Dscholarr&usg=AOvVaw0ha99XPEPwgTiv3oMC7PTE
https://drive.google.com/file/d/1Cpem9LVFYNScAcihBnqw7IRUjnW-wU04/view?usp=sharing
https://drive.google.com/file/d/10ZMjN8Q4w6t4osaYODdBg-pF9zlu21R_/view?usp=sharing
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For example: .. math:

`I_3=H(X_1)+H(X_2)+H(X_3)-H(X_1,X_2)-H(X1,X_3)-H(X_2,X_3)+H(X_1,X_2,X_3)`:

Hu Kuo Ting showed the correspondence of 𝐼𝑘 with set intersections semi-lattice (of finite measurable functions),
and we hence have just like with entropy the following information structure, corresponding to intections on Venn
diagrams:

The other functions that quantifies multivariate depence are Total Correlations, 𝐺𝑘 (Watanabe , see section diabetes
data) , or total free energy, or Integrated Information (Tononi and Edelman ) which are the Kullback-Leibler Diver-
gence between the full joint-entropy and its marginals product, for example, 𝐺3 = 𝐻(𝑋1) + 𝐻(𝑋2) + 𝐻(𝑋3) −
𝐻(𝑋1, 𝑋2, 𝑋3):

𝐺𝑘 = 𝐺𝑘(𝑋1; ...𝑋𝑘;𝑃 ) =

𝑘∑︁
𝑖=1

𝐻(𝑋𝑖)−𝐻(𝑋1; ...𝑋𝑘)

Whereas, 𝐺𝑘 quantifies the total interactions, 𝐼𝑘 quantify the contribution of the kth interaction. Notably, we have the
theorems that state that n variables are independent if and only if 𝐺𝑛 = 0, and n variables are independent if and only
if all the 2𝑛 − 𝑛 − 1 𝐼𝑘 functions with 𝑘 ≥ 2 are null (e.g. 𝐼𝑘 provides a refined independence measure PDF). In
contrast with 𝐺𝑘, 𝐼𝑘 can be negative for 𝑘 ≥ 3, a phenomenon called synergy in the original study of Brenner et al.
Considering the old goal of expressing all of physics in terms of information, following Brillouin, Jaynes, Wheeller
(. . . ), for k geq 2, 𝐺𝑘 corresponds to a Free-Energy functional of a k interacting body system, while the 𝐼𝑘 quantifies
the contribution of the k-bodies interaction to this total free energy. The 𝐼1 component is the internal energy:

𝐻𝑘(𝑋1, .., 𝑋𝑘;𝑃𝑁 ) = 𝐸(𝑋1, .., 𝑋𝑘;𝑃𝑁 )−𝐺(𝑋1, .., 𝑋𝑘;𝑃𝑁 ) = 𝐸 −𝐺

The Free-energy decomposes itself as an alternated sum of 𝐼𝑘 :

𝐺𝑘 =

𝑘∑︁
𝑖=2

(−1)𝑖
∑︁

𝐼⊂[𝑛];𝑐𝑎𝑟𝑑(𝐼)=𝑖

𝐼𝑖(𝑋𝐼 ;𝑃 )

To plot the Information Landscapes and the distribution of 𝐼𝑘 values for each dimension-rank k, we use the “en-
tropy_simplicial_lanscape” command as following:

information_topo.mutual_info_simplicial_lanscape(Ninfomut)

On the example of Iris dataset, the Entropy Landscape we obtain look like this:

1.1. Iris data 11
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To obtain the first m k-tuples with maximum and minimum value in dimension k, and if the dimension is 2,3 or 4
plot the data points in the corresponding k-subspace (the 4th dimension is represented by a color code), we use the
“display_higher_lower_information”. For exmaple, plotting the 2 first maximum and minimum in dimension (framed
in red and blue respectively in the last figure), we use the following command:

information_topo = infotopo(dim_to_rank = 2, number_of_max_val = 2)
dico_max, dico_min = information_topo.display_higher_lower_information(Ninfomut,
→˓dataset)

On the example of Iris dataset, we obtain the two pairs of variables (3,4) and (1,3) that are the most statistically
dependent (“correlated”):

And we obtain the two pairs of variables (1,2) and (2,3) that are the less statistically dependent (“uncorrelated”):

12 Chapter 1. How to Use InfoTopo
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Whenever the dimension to study is more than 4, the function only retreives the dictionaries of the first maximum and
minimum tuples (to print).

1.1.4 Information Networks

In biology (e.g “omic”), neuroscience (e.g “neural network”) and social science (e.g “social network”), it is common
and helpfull to conceive and visualize the one and two dimensional results as (first degree) networks. To visualize the
Information Networks, we use the “mutual_info_pairwise_network” as following:

adjacency_matrix_mut_info = information_topo.mutual_info_pairwise_network(Ninfomut)

The area of each vertex is a function of the marginals information 𝐻1 = 𝐼1 and the thickness of the edges is a function
of the pairwise mutual information or total correlation 𝐼2 = 𝐺2. On Iris dataset, it gives:

1.1. Iris data 13
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The adjacency matrix of information have the marginals informations 𝐻1 = 𝐼1 in its diagonal and is symmetric
with respect to the diagonal as the result of the commutativity of the join-variables and mutual-variables operation in
classical information theory (classical is by opposition with quantum information theory). Compared to usual distance
matrix (with given metric) computed in machine learning (for clustering or classifications), the 𝐼𝑘 are not metric (e.g.
non zero diagonal and no triangle inequality), we will introduce to information metric in the next stepps. With such
Matrix it is possible to apply some usual computational persistence homology tools like Mapper scikit-tda (created
by Singh, Mémoli, and Carlsson) and to build what could be called an “informational Vietoris-Ripps complex”. In
the context of Morse theory, information landscapes consider infomation functions themselfs as height or “Morse”
functions. However there is likely a much more fundamental application of persistence theory in the construction of a
local probability density estimation (to be done). 𝐼𝑘 with 𝑘 ≥ 3 can be repesented in an analgous way using k-cliques
as acheived in Tapia & al 2018 (to be done in the package). They shall be represented using k-tensor formalism.
In the context of complex networks studies those higher 𝐼𝑘 with 𝑘 ≥ 3 correspond to hypergraphs or multiplex or
multilayer networks The raw result obtained here is a fully connected network, but one can obtain a sparse matrix and
a sparsely connected network by thresholding the 𝐼𝑘 with a with fixed p-value, using the exact statistical dependence
test implemented in the package.

We begin to see that Homology provides a wide generalisation of complex networks (a 1-complex, that is a graph) to
higher interactions structures.

1.2 Diabetes data

1.2.1 Diabetes dataset

The Iris dataset and its associated information landsacpes are in too low dimension to appreciate all the interest of the
methods in higher dimensions, so lets turn to larger dimensional classical machine learning dataset: Diabetes dataset.
This dataset is kindly also furnished by scikitlearn, and we load it with the same methods as previously:

dataset = load_diabetes()
dataset_df = pd.DataFrame(dataset.data, columns = dataset.feature_names)
dimension_max = dataset.data.shape[1]
dimension_tot = dataset.data.shape[1]
sample_size = dataset.data.shape[0]
nb_of_values = 9
forward_computation_mode = False
work_on_transpose = False
supervised_mode = False
sampling_mode = 1
deformed_probability_mode = False
dataset_df = pd.DataFrame(dataset.data, columns=dataset.feature_names)

This dataset contains 10 variables-dimensions for a sample size (number of points) of 442 and a target (label) variable
which quantifies diabetes progress. The ten variables are [age, sex, body mass index, average blood pressure, T-Cells,
low-density lipoproteins, high-density lipoproteins, thyroid stimulating hormone, lamotrigine, blood sugar level] in
this order.

1.2.2 Entropy

As before, we execute:

Nentropie = information_topo.simplicial_entropies_decomposition(iris.data)
information_topo.entropy_simplicial_lanscape(Nentropie)
information_topo = infotopo(dim_to_rank = 4, number_of_max_val = 3)
dico_max, dico_min = information_topo.display_higher_lower_information(Nentropie,
→˓dataset) (continues on next page)
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(continued from previous page)

and we obtain the following entropy landscape:

which corresponds to the following distributions of joint entropies for each dimensions:

and the computation of the probability of encountering some undersampled probability density estimation (single point
box) as a function of the dimension gives:

1.2. Diabetes data 15
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Which imposing an arbitrary confidence of P>0.05 (default value of the “p_value_undersmapling” parametter), gives a
undersampling dimension 𝑘𝑢 = 6, meaning that with such level of confidence one should not interpret the landscapes
and information estimations (whatever) above the 5th dimension. This method is very basic and can (or shall) be
improved in several ways, notably a strategy exploring undersampling or information paths should provide more
relevant methods, adapted to data structure (to be done).

The number of tuples (a total of 210)) to represent becomes to hudge, and enforces to plot only the distribution
histograms of k-tuples value (with a given number of bins = nb_bins_histo) in each dimension. We already see that
there exist some interesting structures since the distribution of 𝐻3, 𝐻4, 𝐻5 display obvious bi-modality: the minimum
joint entropy mode of the tuples contains the tuples the furthest from randomness. The result shows for example
that the 3 first minimum 4-entropy (figure below) contains the binary “sex” variable. It points out one of the current
possible limitation-bias of the present algorithm: for heterogeneous variable input, the algorithm should allow different
number of values adapted for each variable (binary ternary etc. . . at the moment their all the same. . . to be done).

16 Chapter 1. How to Use InfoTopo
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1.2.3 Total correlation

We can now focus on the statistical depencies and 𝐺𝑘 and 𝐼𝑘 structures, we will first compute the total correlation 𝐺𝑘,
by running as previously the commands:

Ntotal_correlation = information_topo.total_correlation_simplicial_lanscape(Nentropie)
dico_max, dico_min = information_topo.display_higher_lower_information(Ntotal_
→˓correlation, dataset)

and we obtain the following 𝐺𝑘 landscape:

1.2. Diabetes data 17
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which corresponds to the following distributions of free energy 𝐺𝑘 for each dimensions:

The structure of dependences appears much richer, notably the landscape exhibits nice and clearcut bimodal distri-
bution of free energy from dimension 3 to dimension 8. The data points 4-subspace corresponding to the two first
minima and maxima of 𝐺4 look like this :
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As expected the two 𝐺4 minima present the dependent 4-subspace, but the the two 𝐺4 maxima, for the 4-tuples
(5,6,7,8) and (5,6,8,9), present higly dependent very nice statistical dependencies (further detailed in the 𝐼4 subsection
bellow).

1.2.4 Mutual Information

We can now plot similarly the 𝐼𝑘 landscape, using the commands:

1.2. Diabetes data 19
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Ninfomut = information_topo.simplicial_infomut_decomposition(Nentropie)
information_topo.mutual_info_simplicial_lanscape(Ninfomut)
dico_max, dico_min = information_topo.display_higher_lower_information(Ninfomut,
→˓dataset)
adjacency_matrix_mut_info =information_topo.mutual_info_pairwise_network(Ntotal_
→˓correlation)

and we obtain the following 𝐼𝑘 landscape:

which corresponds to the following distributions of k-mutual information for each dimensions:
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𝐼𝑘 landscape bring new results that could not be infered from total correlations, notably thanks to its possible negativity.
The 𝐼𝑘 landscape of diabetes dataset notably displays important negative values (it was chosen to illustrate this very
peculiar phenomena) in dimension 3 and 4 for some 3-tuples and 1 4-tuples (framed in blue). The data points 4-
subspace corresponding to this minimal 𝐼4 and the maximal 𝐼4 look like this (with different views) :

The tuple maximal 𝐼4 (framed in red) only display a weak correlation, as expected from the low 𝐼4 value. However
the tuple with minimal 𝐼4 (5,6,7,8) displays an impressive correlation structure taking the form of a 3 dimensional
hyperplane (sligtly curved indeed). Looking at projections on 2 dimensional subpaces as shown on the 3 plots on
the right we see that the subspace corresponding to the tuples (5,6) and (7,8) is higly “correlated” while (6,7) and
(5,7) are highly “random”. Indeed, the tuples (5,6), (7,8) and (6,8) obtain the maximum pairwise mutual information.
This phenomena of information negativity is known in neuroscience as synergy since the work of Brenner et al. The
fact that the 4-tuplet (5,6,7,8) have minimal and not maximal 𝐼4 provides us important additional information that
cannot be deduced form the pairwise 𝐼2 (e.g the fact that (5,6) and (7,8) have maximum 𝐼2): the fact that the pair
of variables (5,6) and (7,8) and (6,8) untertain causal relationship but have a common cause (another, possibly joint,
variable). More precisely we can infer the following causal scheme: 5→ 6↔ 8← 7 (with an ambiguity in the causal
dierction between 6 and 8 that could be disambiguated by having a look in the higher dimension 5, and an ambiguity
in the global flow, all the arrows could be reversed, that could be desambiguated by looking at lower dimensions).
This is indeed equivalent to strong transfer entropy (or conditional mutual information, see Schreiber) but applied here
in a general context without time series structure assumption. Transfer entropy is well known to generalize Granger
causality to non-linear cases (see Barnet et al). The classical example of a common causal variable is given by: “as ice
cream sales increase, the rate of drowning deaths increases sharply.”: both are correlated but none of each causes the
other. A section in “how_infotopo_works” is dedicated to a more complete study and explanation of these statistical
interactions. The gene expression study of Tapia et al. provides further examples of strong positive k-tuplet, e.g of
statistical interactions without common cause, or more simply causal chains (e.g metabolic chains). The possiblity
to extract causal relation from information structures, 𝐼𝑘 landscape, is better illustrated by analysing the LUCAS0
Medical diagnosis dataset sympathicaly proposed by the Causality Challenge #1: Causation and Prediction . It can
be acheived by setting the variable dataset_type == 4 in the main of the python script after dowloading the csv at the
previous link. In this synthetic training example the 3 variables “smoking”, “genetics” and “lung cancer” (1,5,12) are
among the minimal 𝐼3 while they were designed to exemplify the causal structure math:1 rightarrow 12 leftarrow 5.
The dataset and causality results are detailed in the next section.
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1.2.5 Information Networks

The information networks representation of 𝐼1 and 𝐼2 for the diabetes dataset is:

The maxima of 𝐼2 are for (5,6) then (7,8) then (6,8) and minima of 𝐼3 are for (5,7,8) then (6,7,8), and this indicate
that 5 may cause 7 and 8, and that 6 causes 7 and 8, while 5 and 6 are highly inter-dependent, among other relation,
potentially complex relationships that can be infered from the information landscape.

1.2.6 Mean Information path

It is interesting to compute and plot the mean 𝐼𝑘 paths, which consist in dividing the sum of 𝐼𝑘 by the binomial
coefficient

(︀
𝑛
𝑘

)︀
, and the Mean 𝐼𝑘 rate , which consist in dividing the preceeding result by the dimension:

⟨𝐼𝑘⟩ =
∑︀

𝑇⊂[𝑛];𝑐𝑎𝑟𝑑(𝑇 )=𝑖 𝐼𝑘(𝑋𝑇 ;𝑃 )(︀
𝑛
𝑘

)︀
Using the command:

mean_info, mean_info_rate = information_topo.display_mean_information(Ninfomut)

we obtain the following mean 𝐼𝑘 paths and mean 𝐼𝑘 rate paths:
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Mean 𝐼𝑘 corresponds to the mean-field approxiamtion in statistical physics, that assumes a homogeneous system with
identical particles and identical k-body interactions. We recover a usual free-energy landscape analogous to n-bdy van
der Waals model, here with a (little) minima at the critical dimension 3, which shows that the interactions (or statistical
dependences) in the data are weak in average (almost the independent case). The same computation and definitions
can be acheived for k-entropy, and is let as an exercise.

1.2.7 Conditional (transfer) Informations

The visualization of information landscapes as histograms do not permit to visualize and study the conditional en-
tropies and Mutual informations, that can be very interesting as we saw with the (extension) of transfer entropy. They
are given by chain rules and correspond to minus the slope of each edges of the lattice in the landscapes. It is possible
to plot them using the command:

NcondInfo = information_topo.conditional_info_simplicial_lanscape(Ninfomut)
information_topo.display_higher_lower_cond_information(NcondInfo)

There are more conditional Informations than 𝐼𝑘 (𝑘
(︀
𝑛
𝑘

)︀
in each k-dimension, and 𝑛2𝑛−1 in total), and we encoded

the output as a list for each dimension, “NcondInfo”, of dictionaries which items are of the forms ((5, 7, 9), 0.352)
for the information of 5,7 knowing 9, e.g. I(5,7|9). Indeed, as remarked by (Han (1981) Yeung generates all the
other information quantities we saw: considering the conditionning variable as the deterministic unit we obtain mutual
informations, and considering equivalent variables we obtain conditional entropies and entropies. Both the “Shannon-
ian” and “non-shannonian” inequalities found by Yeung translates directly in information landscapes as bounds on the
slope paths (or topological cones), unraveling their homological nature (see PDF). For the diabetes dataset, we obtain:
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1.2.8 Entropy Vs. Energy

Following the original figure ENTROPY vs. ENERGY vs. VOLUME of Willard Gibbs (1873) James Clerk Maxwell
(1874), we can resume part of the preceding results by ploting 𝐻𝑘 (absyssa) vs. 𝐺𝑘 (ordinate) using the command:

information_topo.display_entropy_energy_landscape(Ntotal_correlation, Nentropie)

It notably shows how two population of data points clusters from dimension 6 to 8.

1.2.9 Information distance

Another nice information measure is information distance or metric defined by 𝑉2(𝑋;𝑌 ) = 𝐻2(𝑋,𝑌 )− 𝐼2(𝑋;𝑌 ) .
It is a “real” (and unique see Han for unicity proof metric in the sens that it satifies triangle inequalities and symmetry
(precisely except identity if null, it is even better than a metric, it is a pseudo-metric). This metric was find by Shannon
(1953) , and was the subject of further interesting both applied and theoretical studies (Han 1981 , Rajski 1961 , Zurek
, Bennett and Kraskov and Grassberger). It indeed appears as a topological invariant in a precise setting cohomological
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setting and generalises to the multivariate case to k information volumes 𝑉𝑘 = 𝐻𝑘(𝑋,𝑌 ) − 𝐼𝑘(𝑋;𝑌 ) PDF . 𝑉𝑘 are
non-neagtive and symmetric functions. For Machine Learning, this shall be understood as an informational version
of Jaccard metric, intersection over union (iou) or other union minus intersection metrics. We can compute their
simplicial structure using the commands:

Ninfo_volume = information_topo.information_volume_simplicial_lanscape(Nentropie,
→˓Ninfomut)
dico_max, dico_min = information_topo.display_higher_lower_information(Ninfo_volume,
→˓dataset)
adjacency_matrix_info_distance = information_topo.mutual_info_pairwise_network(Ninfo_
→˓volume)

On the Diabete dataset, it gives the following 𝑉𝑘 landscape:

with the following distributions:

1.2. Diabetes data 25

https://www.mdpi.com/1099-4300/21/9/881


INFOTOPO Documentation, Release stable

We see that the structure is less interesting compared to the one we obtained with 𝐼𝑘 and 𝐺𝑘, but its geometrical status
of a (pseudo)-metric leaves it appealing to plot in its network representation.

Beware that these tools will not detect whatever possible statistical dependencies (see James and Crutchfield PDF),
this is just a simplicial subset (nice. . . paths are automorphism) subsets, computationnally tractable. The com-
plete structure of dependencies are spanned by general information structures and lattice of patition (see section
how_infotopo_works), which embedds the present simplicial case. This concludes our introduction to basic info-
topo usage – hopefully this has given you the tools to get started for yourself. Further tutorials, covering infotopo
parameters and more advanced usage are also available when you wish to dive deeper.(X)
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CHAPTER 2

Topological Learning

2.1 Topological Learning principles

2.1.1 Information Complexes

The presentation of the basic methods and principles we made so far mostly relied on basic information lattice decom-
position and simplex structure. In what follows, we will go one stepp further by introducing to simplicial complexes
of information which can display much richer structures. This will be the occasion to study more in depth information
paths, the analog of homotopical paths in information theory. We will consider subcomplex of this simplicial structure,
invocating the fact that any simplicial complex can be realized as a subcomplex of a simplex (Steenrod 1947 , p.296).

As introduced previously, an information path 𝐼𝑃𝑘 of degree k on 𝐼𝑘 landscape is defined as a sequence of elements of
the lattice that begins at the least element of the lattice (the identity-constant “0”), travels along edges from element to
element of increasing degree of the lattice and ends at the greatest element of the lattice of degree k (a piecewise linear
function). The first derivative of an 𝐼𝑃𝑘 path is minus the conditional mutual information. The critical dimension of
an 𝐼𝑃𝑘 path is the degree of its first minimum. A positive information path is an information path from 0 to a given
𝐼𝑘 corresponding to a given k-tuple of variables such that 𝐼𝑘 < 𝐼𝑘−1 < ... < 𝐼1 (a chain, total order). A maximal
positive information path is a positive information path of maximal length: it ends at minima of 𝐼𝑘 along the path (a
minima of the free energy components quantified by 𝐼𝑘. In statistical terms, this minima is equivalent to a conditionnal
independence: it means that the conditional mutual information (slope) of the paths goes throug 0. Those maximal
paths identifies the maximal faces of the 𝐼𝑘 complex and charaterize it, because a simplicial complex is uniquely
determined by the list of its maximal faces (intoduction to simplicial homology ). Hence, the set of all these paths
defines uniquely the 𝐼𝑘 complex (or minimum free energy complex). An example of such a complex of dimension 4,
with its information path 𝐼𝑃𝑘, is given in this figure:

27

https://www.jstor.org/stable/1969172
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwiRyeqK6PrrAhUDyxoKHSBBAcoQFjACegQIBRAB&url=https%3A%2F%2Flink.springer.com%2Farticle%2F10.1007%2Fs00454-017-9865-z%3Fshared-article-renderer&usg=AOvVaw2tpdusnNrLy9q4cqxB240g


INFOTOPO Documentation, Release stable

Note that, as a result of classical Shannonian information inequalities, any complex of dimension 3 or below is neces-
sarilly a simplex, indicating that in information and statitics, 3 and 4 dimensional topology are also very special.

2.1.2 Poincaré-Shannon Machine

Information theory motivated the early stages of Machine Learning and Information sensory processing theories.
The principle was self-resumed by Chaitin: “Understanding is compressing”. Notably, Attneave (1954) ennouciated
the principles of efficient coding (with Barlow) in the following terms: the goal of sensory perception is to extract
the redundancies and to find the most compressed representation of the environment. Any kind of symmetry and
invariance are information redundancies and Gestalt principles of perception can be defined on information theoretic
terms. This is basically illustrated by, Attneave’s famous cat and the topologically sounding Gestalt principle of
perceptual binding illustrated bellow:

Since then Information theory has provided machine learning’s central functions: the loss functions: Maximum en-
tropy is at the root of Jaynes and may statistical physic inference model, maximum mutual information (infomax) was
stated and studied by Linsker, Nadal and Parga, and Bell and Sejnowsky and formalized ICA principles and Hebbian
plasticity, generalizing PCA to non-linear cases, Boltzmann Machine minimized the KL-divergence. . . untill current
Deep Convolutional Neural Networks (CNN) that basically minimize cross entropy or “deformed” functions of it like
the focal loss (very close indeed to a “deformed probability”!). The principles stayed the same, but Neural network
architectures, data availability, computational power and software facilities increased enormously.
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For instance, Boltzmann Machines are reccurent neural networks of binary random variables with hidden layer, that
can be formalized as a Markov random field. Markov random fields are a small, positive, subcase of information
structures (see proposition 7 (Hu) PDF).

The models developped here are called the Poincaré-Shannon machine in reverence to Boltzmann Machine , Helmholtz
Machine and the original Hopfield’s network , since it implements simplicial homology (see Poincaré’s Analysis Situs
, that arguably foundate algebraic topology) and information theory in a single framework (see Shannon’s theory of
communication , that foundate information theory), applied effectively to empirical data.

The Poincaré-Shannon machine are generic feed forward Deep Neural Networks (DNN) model with a layered structure
given by a chain complex (of random variables), e.g. imposed by algebraic topology, and whose connections are given
by the edges of the embedding lattice. In the basic simplicial case developped computationnaly here, the rank of the
layers of the DNN is the dimension of the faces of the complex, and the highest rank of the layers is the dimension
of the complex. As with usual DNN, the dimension of the analized patterns increases with the depth of the layers
(see for illustration, figure 2 Zeiler and Fergus 2013) The neurons are random variables, and are whatever measurable
functions (linear, non linear), hence covering a “fairly” large class of functions (notably, using the Solovay’s axiomatic
of set theory, all functions are measurable). In the general (and computationally hard) setting of general information
strutures, that considers the lattice of partitions (cf. section “how infotopo works”), the Poincaré-Shannon machine
are Universal Classifiers, in the sens that a partition corresponds exactly to an equivalence class and in theory such a
model would span all classifications up to equivalence). This topological structure allows, and de facto implements
the fact, that neural layers are not necessarilly serial as in current DNN, but can be parralel. Such architectures are
well known in real sensory cortical systems, for example the ventral and dorsal visual streams in human cortex would
corresponds to two facets of the human brain complex with two (at least partially disjoint information paths) and
analyze conditionally independent features of the input such as the “where and what” (dorso and ventral, respectively
PDF). Hence one of the interest of such deep model is that its architecture (number of layers, number of neurons at
each layer, connectivity) and computation is fully mastered and understood, as far as simplicial complexes can be:
it can be understood as an algebrization of neural networks (there are other very interesting approachs of such topic
(not probabilistic as here), see for example the neural rings (Curto and Youngs 2013-2020) or Morisson et al. 2016
Morisson and Curto 2018 ).

Beside this architectural difference with usual DNN, the second important difference is that the learning rule is a “for-
ward propagation”, imposed by the cohomological “direction”, whereas usual DNN implements a backpropagation
learning rule (homological “direction”) which implements basically the chain rule of derivation (Kelley 1960 , Le Cun
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1985, Dreyfus 1962, Rumelhart et al. 1986). The information topology take profit of the coboundary nature of 𝐼𝑘
functions, a (discrete in the present particular case) statistical analog of differential operator. This means that there
is no descent as in the usual DNN implementation, but that computation of those 𝐼𝑘 and conditional 𝐼𝑘 implements
the descent. Notably, the introduction of the multiplicity decomposition of “energy functions” formalizes learning
in neural networks in terms of a combinatorial family of analytically independent functions 𝐼𝑘 (moreover with inde-
pendent gradients) on the probability simplex (Han 1975 Han 1978 Theorem 4 in PDF): instead of a single energy
and associated gradient descent, mutual information provides a multiplicity of gradients. The following illustration
presents the DNN architecture associated with the previous example of an 𝐼4 complex:

2.2 Unsupervised topological learning

2.2.1 Causality challenge dataset

We will illustrate the computation of free energy complex (or 𝐼𝑘 complex) on the synthetic dataset LU-
CAS (LUng CAncer Simple set) of the causality challenge. Before trying the code on your computer,
you will have to download the file “lucas0_train.csv” and to save it on your hard disk (here at the path
“/home/pierre/Documents/Data/lucas0_train.csv”), and to put your own path in the following commands with the
initialisation of infotopo’s parameters.

import pandas as pd
dataset = pd.read_csv(r"/home/pierre/Documents/Data/lucas0_train.csv") # csv to
→˓download at http://www.causality.inf.ethz.ch/data/LUCAS.html
dataset_df = pd.DataFrame(dataset, columns = dataset.columns)
dataset = dataset.to_numpy()
information_topo = infotopo(dimension_max = dataset.shape[1],

dimension_tot = dataset.shape[1],
sample_size = dataset.shape[0],
work_on_transpose = False,
nb_of_values = 2,
sampling_mode = 1,
deformed_probability_mode = False,
supervised_mode = False,
forward_computation_mode = False,
dim_to_rank = 3, number_of_max_val = 4)
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The dataset is composed of 11 variables: 1: Smoking, 2: Yellow_Fingers, 3: Anxiety, 4: Peer_Pressure, 5: Genetics,
6: Attention_Disorder, 7: Born_an_Even_Day, 8: Car_Accident, 9: Fatigue, 10: Allergy, 11: Coughing and the 12th
variable of iterest: Lung cancer. The (buildin) causality chain relations among those varaibles follow this schema:

2.2.2 Information Complexes

To compute (approximation) of the information complex (free-energy complex), you can use the following command:

Ninfomut, Nentropie = information_topo.fit(dataset)
information_topo.information_complex(Ninfomut)

The method “fit” is just a wrapper of the methods “simplicial_entropies_decomposition” and “simpli-
cial_infomut_decomposition”, that is introduced to correspond to the usual methods of scikit-learn, keras, tensorflow
(. . . ). The set of all paths of degree-dimension k is intractable computationally (complexity in 𝒪(𝑘!) ). In order to
bypass this issue, the current method “information_complex” computes a fast local algorithm that selects at each ele-
ment of degree k of a path, the positive information path with maximal or minimal 𝐼𝑘+1 value (equivalently, extremal
conditional mutual informations) or stops whenever 𝑋𝑘.𝐼𝑘+1 ≤ 0 and ranks those paths by their length. The justifica-
tion of this elementary heuristic is that it should capture the paths with the most interesting tuples, e.g the one highest
anf lowest 𝐼𝑘. No doubt that this approximation is rought and shall be improved in future (to be done). The result on
the causality challenge dataset is:
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and it prints the following paths:

The path of maximal mutual-info Nb 1 is : [5, 12, 11, 9, 8, 6, 2, 1, 10, 4], The
→˓path of minimal mutual-info Nb 1 is : [7, 2, 11], The path of maximal mutual-info
→˓Nb 2 is :[2, 12, 11, 9, 3, 6, 10, 5], The path of minimal mutual-info Nb 2 is :
→˓[3, 4, 1], The path of maximal mutual-info Nb 3 is : [1, 2, 12, 11, 9, 3, 6, 10,
→˓5], The path of minimal mutual-info Nb 3 is : [10, 4, 7], The path of maximal
→˓mutual-info Nb 4 is : [9, 11, 12, 1, 2, 3, 6, 10, 5], The path of minimal mutual-
→˓info Nb 4 is : [4, 3, 1], The path of maximal mutual-info Nb 5 is :[8, 9, 11, 12,
→˓5, 6, 2, 1, 10, 4], The path of minimal mutual-info Nb 5 is : [6, 1, 12] etc..

The first maximal path [5, 12, 11, 9, 8, 6, 2, 1, 10, 4] as length 10 and the first 5 variables corresponds to one of the
longest causal chain of the data as illustrated bellow. The fact that the resulting path is so long is likely due to the
generating algorithm used for Lucas, and the last [6,2,1,10,4] errors could be removed by statistical test thresholding
on conditional mutual information values. The next maximal paths fail to identify the other long causal chain of the
data, probably as a consequence of the rought approximation used by the algorithm. The First two minimal paths [7,
2, 11] and [3, 4, 1] identifies unrelated variables or multiple cause causality scheme.
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Beware, that the computational heuristic provided does not give a chain complex in the algebraic topology sens, but
just a partial approximate view: notably due to the heuristic some chains identified by the algorithm may included in
other (and hence may bot be maximal faces). The excat computation of the information is acheived by running this
code:

N_info_paths = information_topo.information_paths(Ninfomut)

Its output are the maximal faces of the complex. However, at least with the current code and a basic computer, it is
hopeless to run it for problems with dimension above 10.

2.2.3 Digits Dataset

In order to illustrate unsupervised and supervised learning methods we will now turn to the classical dataset of Digits
NIST, which is a common toy dataset to train and test machine learning models. We load it as previously using the
symapthic Scikit-learn repository:

dataset = load_digits()
print(dataset.DESCR)
fig, ax_array = plt.subplots(20, 20)
axes = ax_array.flatten()
for i, ax in enumerate(axes):

ax.imshow(dataset.images[i], cmap='gray_r')
plt.setp(axes, xticks=[], yticks=[], frame_on=False)
plt.tight_layout(h_pad=0.5, w_pad=0.01)
dataset_df = pd.DataFrame(dataset.data, columns = dataset.feature_names)
dataset_df = pd.DataFrame(dataset.data, columns=dataset.feature_names)
dataset = dataset.data

It prints the following complete description of the dataset:

Optical recognition of handwritten digits dataset
--------------------------------------------------

Data Set Characteristics:

:Number of Instances: 5620
:Number of Attributes: 64
:Attribute Information: 8x8 image of integer pixels in the range 0..16.
:Missing Attribute Values: None
:Creator: E. Alpaydin (alpaydin '@' boun.edu.tr)
:Date: July; 1998

This is a copy of the test set of the UCI ML hand-written digits datasets
→˓https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+
Digits

The data set contains images of hand-written digits: 10 classes where each
→˓class refers to a digit.

Preprocessing programs made available by NIST were used to extract normalized
→˓bitmaps of handwritten digits from a preprinted form. From a
total of 43 people, 30 contributed to the training set and different 13 to

→˓the test set. 32x32 bitmaps are divided into nonoverlapping blocks of
4x4 and the number of on pixels are counted in each block. This generates an

→˓input matrix of 8x8 where each element is an integer in the range
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0..16. This reduces dimensionality and gives invariance to small distortions.

For info on NIST preprocessing routines, see M. D. Garris, J. L. Blue, G., T.
→˓Candela, D. L. Dimmick, J. Geist, P. J. Grother, S. A. Janet, and C.
L. Wilson, NIST Form-Based Handprint Recognition System, NISTIR 5469, 1994.

.. topic:: References

- C. Kaynak (1995) Methods of Combining Multiple Classifiers and Their
→˓Applications to Handwritten Digit Recognition, MSc Thesis, Institute of

Graduate Studies in Science and Engineering, Bogazici University.
- E. Alpaydin, C. Kaynak (1998) Cascading Classifiers, Kybernetika.
- Ken Tang and Ponnuthurai N. Suganthan and Xi Yao and A. Kai Qin. Linear

→˓dimensionalityreduction using relevance weighted LDA. School of
Electrical and Electronic Engineering Nanyang Technological University.

→˓2005.
- Claudio Gentile. A New Approximate Maximal Margin Classification

→˓Algorithm. NIPS. 2000.

And illustrates the dataset with the following sample of digits pictures:

34 Chapter 2. Topological Learning



INFOTOPO Documentation, Release stable

2.2.4 Adaptive computational complexity

The images of digits dataset are 8*8 pixels, meaning that we have 64 Random Variables or dimensions: this will
introduce us to the problemantic of high dimensional space (here not so high) and of computational complexity. In
this case the information simplicial structure has 264 information estimations to compute, which is much too big,
and we propose a partial exploration that will stop the computation at a given dimension “dimension_max”. This
methods of partial exploration allows to adapt the computational (time) complexity of the algorithm to a reason-
able complexity given your computational ressources and the dimension of the dataset. As we have seen, when
increasing the dimension of the dataset, the raw computation potentially grows as 𝒪(2𝑛). In order to master and
circumvince this problem, a partial exploration of information structures as been written, allowing to explore only
all the k first dimensions with 𝑛 ≥ 𝑘. This is acheived by setting the parametter “dimension_max” to k and “for-
ward_computation_mode” to “True”. For example, setting “dimension_max=2” will restrict the computation to the(︀
𝑛
1

)︀
= 𝑛 and the

(︀
𝑛
2

)︀
= 𝑛!/(2!(𝑛 − 2)!) = 𝑛.(𝑛 − 1)/2 estimations of information, which is the (symetric) usual

complexity𝒪(𝑛2) of metric or graph based machine learning algorithm. Setting to 3, there will be
(︀
𝑛
1

)︀
+
(︀
𝑛
2

)︀
+
(︀
𝑛
3

)︀
es-

timations of information giving a complexity in𝒪(𝑛3) etc. . . Of course, we gain what we loose, and the deployement
of infotopo on GPU should give a bit more of ressources (currently failed). In 64 dimensions, choosing an exploration
of the 5 first dimensions (64+2016+41664+635376+7624512=8303632 estimations) gives a reasonably long compu-
tation of several hours on a personal laptop (has acheived here) To set such exploration, we initialize infotopo using
the commands:

information_topo = infotopo(dimension_max = 5,
dimension_tot = dataset.shape[1],
sample_size = dataset.shape[0],
work_on_transpose = False,
nb_of_values = 17,
sampling_mode = 1,
deformed_probability_mode = False,
supervised_mode = False,
forward_computation_mode = True,
dim_to_rank = 3, number_of_max_val = 4)

For data scientist used to deep learning terminology, this intialization corresponds to building the model, although
extremely simple. As you see, the whole structure of the model is fully constrained by the dataset’s embedding dimen-
sion, the dimension max (computational complexity restriction), and the number of values chosen for the variables
(with other purely computational internal parameter).

2.2.5 Natural image statistics

We now apply the model to digits dataset in a first unsupervised case that considers the pixels as variables-dimension
up the fifth dimension. It means that we will consider all statistical dependencies, or statistically dependent patterns
composed of up to 5 pixels in the digits datset. In computational vision and neursocience, such a task pertains to the
domain of natural image statistics studies (see notably chap. 1.4 of the book “natural image statistics”, Hyvärinen et
al 2009 ). Of course, the example will present here only a very small subset of natural image statistics corresponding
to human hand written digits, but the principle of the study stays the same for other kind of images. We fit the model
and display the informations landscape by running the following code:

Ninfomut, Nentropie = information_topo.fit(dataset)
Ntotal_correlation = information_topo.total_correlation_simplicial_lanscape(Nentropie)
dico_max, dico_min = information_topo.display_higher_lower_information(Ntotal_
→˓correlation, dataset)
information_topo.mutual_info_simplicial_lanscape(Ninfomut)
dico_max, dico_min = information_topo.display_higher_lower_information(Ninfomut,
→˓dataset)
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The output of fit gives the model of the data, it concentrates the computationaly hard tasks, and just as it is usually
acheived with Neural Network training, for large dimensional problems, it is recommended to save the model (Nen-
tropy,Ninfomut) in a file (using for example pickle, a saving procedure in hdf5 will be written, to be done). The free
energy or total correlation 𝐺𝑘 landscape, and its 4 maxima triplets data subspace we obtain are the following:
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The mutual information 𝐼𝑘 landscape, and its 4 maxima triplets data subspace we obtain are the following:
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Both landscapes shows the presence of important higher order statitical patterns, with clear and complex multimodal
distributions. For those who where not convinced yet that higher orders statictics matters, it now shall be the case: they
are indeed the support of our (higher level) every day world’s perception and object recognition. 𝐼𝑘 landscape notably
shows that most k-uplets of pixels are k-independent (e.g. 𝐼𝑘 = 0). The computation of information distances and
volume, joint entropies, conditional informations (. . . ) are left as an exercise, but all of them present some meaningfull
distributions-spectra.
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2.2.6 Convolutional methods

The preceding computation of statistical structures in images has the default of not being translation invariant, made
obvious here by the centering preprocessing of the digits in the images. Such a potential problem is easily overcome
by using basic convolutional patches instead of the direcy images, just as Convolutional layer of Neural Network
do. Note that implementing an information network corresponding to current Convolutional Network would require
an iterative process of pooling the maximal information modules and of landscape info paths computation (to be
done both theoretically and in practice). However, such a method appears more for the moment as a computational
trick to reduce computation rather than a firmly theoretically established method. To extract convolutional patchs of
the images we use the function “convolutional_patchs”. The function extracts images patchs of m*m pixels (with
𝑚 = ⌊

√
𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑚𝑎𝑥⌋ ) by sliding on the images. As the function change the matrix of data input and its shape,

the function reset automatically dimension_tot=dimansion_max to (⌊
√
𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑚𝑎𝑥⌋)2 and the sample_size to

𝑠𝑎𝑚𝑝𝑙𝑒𝑠𝑖𝑧𝑒.(𝑛 − (𝑚 − 1))2 (where image are n*n pixels and patchs are m*m pixels, and there are (𝑛 − (𝑚 − 1))2

convolutional patchs in a single image). In the example below we set dimansion_max to 16 and hence patchs of 4*4
pixels in sample_size=100 digits images, and we obtain 2500 points-patchs in 16 dimensions.

2.3 Supervised topological learning

2.3. Supervised topological learning 39
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CHAPTER 3

Parameters

3.1 Algorithmic parameters

3.1.1 dimension_max

(integer) maximum Nb of Random Variable (column or dimension) for the exploration of the cohomology and lattice

3.1.2 dimension_tot

(integer) total Nb of Random Variable (column or dimension) to consider in the input matrix for analysis (the first
columns)

3.1.3 sample_size

(integer) total Nb of points (rows or number of trials) to consider in the input matrix for analysis (the first rows)

3.1.4 work_on_transpose

(Boolean) if True take the transpose of the input matrix (this change column into rows etc.)

3.1.5 nb_of_values

(integer) Number of different values for the sampling of each variable (alphabet size). It is recommanded to tune
this parametter in case of continuous variable. A too small number of values will result in a biased estimation of
informations functions that homogenizes information structures, while a too large number of values with respect to
the sample size will lead to a fast curse of dimensionality and an interpretation restricted to low dimensions as depited
in the following figure. The method proposed to tunne nb_of_values is adapted from Maximum Mutual Information
Coefficient (MIC, Reshef et al. 2011 ) and is describded in section 6.6 PDF . It consist in evaluating the mean mutual
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information path for a set of different values of nb_of_values together with the undersampling dimension 𝑘𝑢 and to
choose the one that give the maximum value of mean 𝐼2, as depicted bellow, or a compromise between this maximum
value and a not to low 𝑘𝑢. An automatic tuning preocedure could be written (to be done).

3.1.6 sampling_mode

(integer: 1,2,3)

_ sampling_mode = 1: normalization taking the max and min of each columns (normaization row by columns)

_ sampling_mode = 2: normalization taking the max and min of the whole matrix

3.1.7 deformed_probability_mode

(Boolean) The method associated to true do not work yet (to be done)

_ deformed_probability_mode = True : it will compute the “escort distribution” also called the “deformed probabili-
ties”. *p(n,k)= p(k)^n/ (sum(i)p(i)^n , where n is the sample size.

[1] Umarov, S., Tsallis C. and Steinberg S., On a q-Central Limit Theorem Consistent with Nonextensive Statistical
Mechanics, Milan j. math. 76 (2008), 307–328
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[2] Bercher, Escort entropies and divergences and related canonical distribution. Physics Letters A Volume 375, Issue
33, 1 August 2011, Pages 2969-2973

[3] A. Chhabra, R. V. Jensen, Direct determination of the f(𝛼) singularity spectrum. Phys. Rev. Lett. 62 (1989) 1327.

[4] C. Beck, F. Schloegl, Thermodynamics of Chaotic Systems, Cambridge University Press, 1993.

[5] Zhang, Z., Generalized Mutual Information. July 11, 2019

_ deformed_probability_mode = False : it will compute the classical probability, e.g. the ratio of empirical frequencies
over total number of observation

[6] Kolmogorov 1933 foundations of probability

3.1.8 supervised_mode

(Boolean) if True it will consider the label vector for supervised learning; if False unsupervised mode

3.1.9 forward_computation_mode

(Boolean)

_ forward_computation_mode = True : it will compute joint entropies on the simplicial lattice from low dimension
to high dimension (co-homological way). For each element of the lattice of random-variable the corresponding joint
probability is estimated. This allows to explore only the first low dimensions-rank of the lattice, up to dimension_max
(in dimension_tot)

_ forward_computation_mode = False : it will compute joint entropies on whole simplicial lattice from high dimension
to the marginals (homological way). The joint probability corresponding to all variable is first estimated and then
projected on lower dimensions using conditional rule. This explore the whole lattice, and imposes dimension_max =
dimension_tot

3.1.10 p_value_undersampling

(real in ]0,1[) value of the probability that a box have a single point (e.g. undersampled minimum atomic probability
= 1/number of points) over all boxes at a given dimension. It provides a confidence to estimate the undersampling
dimenesion Ku above which information etimations shall not be considered.

3.1.11 compute_shuffle

(Boolean)

_ compute_shuffle = True : it will compute the statictical test of significance of the dependencies (pethel et hah 2014)
and make shuffles that preserve the marginal but the destroys the mutual informations

_ compute_shuffle = False : no shuffles and test of the mutual information estimations is acheived

3.1.12 p_value

(real in ]0,1[) p value of the test of significance of the dependencies estimated by mutual info the H0 hypotheis is the
mutual Info distribution does not differ from the distribution of MI with shuffled higher order dependencies

3.1. Algorithmic parameters 43
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3.1.13 nb_of_shuffle

(integer) number of shuffles computed

3.2 Display parameters

3.2.1 nb_bins_histo

(integer) number of values used for entropy and mutual information distribution histograms and landscapes.

3.2.2 dim_to_rank

(integer) chosen dimension k to rank the k-tuples as a function information functions values.

3.2.3 number_of_max_val

(integer) number of the first k-tuples with maximum or minimum value to retrieve in a dictionary and to plot the corresponding data
points k-subspace.
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CHAPTER 4

Indices and tables

• genindex

• modindex

• search
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CHAPTER 5

Contributors

• Pierre Baudot. (methods, theory, package and doc)

• Daniel Bennequin wikipedia (methods and theory)

• Mathieu Bernardi (convolutional patchs and GPU deployement - Machine Learning internship)

• Etienne Combrisson (application to CNS MRI, package and organization, documentation. . . )

• Jean-Marc Goaillard (genetic expression data application)

• Monica Tapia (genetic expression data application)
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